

to the methyl ester 1<sup>10</sup> (4 equiv of NaOMe, MeOH, 0-20 °C 90%). Compound 1 was hydrolyzed with 0.2 N aqueous NaOH (1 equiv) (THF, 20 °C) to afford cleanly the sodium salt 2 (>-90%).<sup>22</sup> Similary, the  $C_{15}$ -isomer 17 and its sodium salt 18 were obtained from 16.

Biological Activities: These compounds were very effective in contracting rat aorta strip (contracting dose,  $CD_{50}$ : 1, 5 × 10<sup>-9</sup> M; 2,  $7 \times 10^{-10}$  M; 17,  $3 \times 10^{-8}$  M; 18,  $2 \times 10^{-8}$  M). Compound 2 caused marked, rapid, and irreversible aggregation of human platelets (effective dose,  $ED_{50}$ : 4.3 × 10<sup>-6</sup> M); however, other compounds showed no aggregation effect.

The TXA<sub>2</sub> analogues thus obtained possessed very potent biological activities. In particular, compound 2 showed properties very similar to natural  $TXA_2$ . We believe that these analogues will be of great value in biological studies.

Acknowledgment. We thank Mr. Hideo Naoki, Suntory Institute for Bioorganic Research, for measurement of <sup>1</sup>H NMR (360 MHz) spectra.

Supplementary Material Available: A listing of spectral data (6 pages). Ordering information is given on any current masthead page.

## A Tungsten T-Shaped Methylene Complex and Related Methylidyne Hydride Complexes<sup>1</sup>

Steven J. Holmes and Richard R. Schrock\*

Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Received April 6, 1981

A neopentylidene ligand in certain types of Nb and Ta complexes has a large M- $C_{\alpha}$ - $C_{\beta}$  angle due to what is postulated to be an attraction of the metal for  $H_{\alpha}$  or the C-H<sub> $\alpha$ </sub> electron pair.<sup>2</sup> When the metal is formally reduced by two electrons,  $H_{\alpha}$  can either remain in a "bridging" position between  $C_{\alpha}$  and the metal [e.g., as in Ta(CHCMe<sub>3</sub>)(PMe<sub>3</sub>)<sub>4</sub>Cl], or it can actually transfer to the metal to give a neopentylidyne hydride complex.<sup>3</sup> A structural study of a benzylidene complex<sup>4</sup> suggests that the benzylidene ligand, too, can distort significantly from the expected  $M-C_{\alpha}-C_{\beta}$  angle. Since distortion of both the neopentylidene and the benzylidene ligands would be encouraged by steric interaction of the tert-butyl or phenyl substituent with the metal, a major question is whether a methylene ligand in certain situations will also distort toward, and in some cases give, a methylidyne hydride complex. We present evidence here that both can happen in tungsten complexes which are isoelectronic with Ta-(CHCMe<sub>3</sub>)(PMe<sub>3</sub>)<sub>4</sub>Cl. In all cases, the two inequivalent protons interconvert at room temperature at a rate which is rapid on the  $M-C_{\alpha}-C_{\beta}$  time scale at 25 °C.

W(CH)(PMe<sub>3</sub>)<sub>4</sub>Cl<sup>5</sup> reacts with CF<sub>3</sub>SO<sub>3</sub>H (or Me<sub>3</sub>PH<sup>+</sup>-CF<sub>3</sub>SO<sub>3</sub>, to give red crystals of [W(CH<sub>2</sub>)(PMe<sub>3</sub>)<sub>4</sub>Cl]<sup>+</sup>CF<sub>3</sub>SO<sub>3</sub> (1).<sup>6</sup> The chemical shift for the methylene  $\alpha$  carbon atom (220 ppm) and  $J_{CH}$  (120 Hz) are appropriate for a methylene complex. The <sup>1</sup>H NMR spectrum at 298 K in CD<sub>2</sub>Cl<sub>2</sub> shows a signal for the equivalent methylene protons at -0.16 ppm ( $J_{HW} = 51$  Hz), and the <sup>31</sup>P{<sup>1</sup>H} NMR spectrum shows a single peak at -31 ppm  $(J_{PW} = 248 \text{ Hz})$ . The couplings to <sup>183</sup>W suggest that neither the methylene protons nor the phosphine ligands dissociate at a rate which is rapid on the NMR time scale at 298 K.

NMR spectra of  $[W(CH_2)L_4Cl]^+$  (L = PMe<sub>3</sub>) are temperature dependent. When an <sup>1</sup>H NMR sample of  $[W(CH_2)L_4Cl]^+$  in  $CFHCl_2/CD_2Cl_2$  is cooled, the -0.16-ppm peak broadens and shifts upfield to  $\sim$ -0.30 ppm at  $\sim$ 215 K and then disappears into the base line. At 165 K a new, broad peak appears at -7.97 ppm with an estimated area of one proton. Another peak (presumably also of area one) can be located at  $\sim$ 7.05 ppm as part of the shoulder on the CFHCl<sub>2</sub> peak. This was confirmed by irradiating at 7.05 ppm and observing that the -7.97-ppm peak nearly disappeared due to transfer of the magnetization from one proton site (7.05 ppm) to the other (-7.97 ppm).<sup>7</sup> The average of the positions of these two peaks (-0.46 ppm) is slightly further upfield of the observed position for the average peak (-0.30 ppm) before it disappeared into the base line. The <sup>31</sup>P NMR spectrum at 165 K shows two identical singlets (-22 and -33 ppm) with <sup>183</sup>W satellites ( $J_{PW} = 248 \text{ Hz}$ ).

A plausible explanation of these findings is that this molecule contains a grossly distorted, approximately "T-shaped" methylene ligand in which one  $H_{\alpha}$  is oriented over one face of the octahedron (A, eq 1). Since grossly distorted neopentylidene and benzylidene ligands are alkylidyne-like,<sup>2a,4,8</sup> we expect H<sub>A</sub> to be a methyli-

(6) Anal. Calcd for WC14H38ClP4F3SO3: C, 24.48; H, 5.54. Found: C, 24.65; H, 5.72

(7) Forsé, S.; Hoffman, R. A. J. Chem. Phys. 1964, 39, 2892-2901.
(8) (a) Churchill, M. R.; Youngs, W. J. Inorg. Chem. 1979, 18, 171-175;
(b) Churchill, M. R.; Youngs, W. J. Inorg. Chem. 1979, 18, 1930-1935.

<sup>(21)</sup> The value of the coupling constant  $(J_{8,12})$  was 7.2 Hz.

<sup>(22)</sup> The free acids of 2 and 18 were not very stable. The sodium salts were, without further purification, used to study biological activities.

<sup>(1)</sup> Multiple Metal-Carbon Bonds. 22. For part 21, see: Wengrovius, J. H.; Sancho, J.; Schrock, R. R. J. Am. Chem. Soc. 1981, 103, 393

<sup>(2) (</sup>a) Schultz, A. J.; Brown, R. K.; Williams, J. M.; Schrock, R. R. J. (a) Solutic, 148 J. 103, 169-176;
 (b) Goddard, R. J.; Hoffmann, R.; Jemmis, E. D. J. Am. Chem. Soc. 1981, 103, 7667-7676.
 (3) Fellmann, J. D.; Turner, H. W.; Schrock, R. R. J. Am. Chem. Soc. 1980, 102, 6609-6611.

<sup>(4)</sup> Messerle, L. W.; Jennische, P.; Schrock, R. R.; Stucky, G. J. Am. Chem. Soc. 1980, 102, 6744-6752.

<sup>(5)</sup> Sharp, P.; Holmes, S. J.; Schrock, R. R.; Churchill, M. R.; Wasserman, H. J. J. Am. Chem. Soc. 1981, 103, 965-966.

$$\begin{bmatrix} \mathbf{H}_{A} & \mathbf{H}_{A}, \mathbf{H}_{B} \\ \mathbf{C}_{-} \mathbf{H}_{B} \\ \mathbf{L}_{-} \mathbf{H}_{-} \mathbf{L} \end{bmatrix}^{+} = \begin{bmatrix} \mathbf{H}_{A}, \mathbf{H}_{B} \\ \mathbf{C}_{-} \mathbf{H}_{-} \mathbf{H}_{-} \mathbf{L} \\ \mathbf{L}_{-} \mathbf{H}_{-} \mathbf{L} \end{bmatrix}^{+}$$
(1)

dyne-like proton with a chemical shift of  $\sim 7 \text{ ppm.}^5$  Therefore the high-field signal must be due to H<sub>B</sub>. This is entirely consistent with the chemical shift of H<sub>a</sub> in grossly distorted neopentylidene complexes [e.g., -7.4 ppm in Ta(CHCMe<sub>3</sub>)(PMe<sub>3</sub>)<sub>4</sub>Cl<sup>3</sup>]. As the temperature is raised H<sub>B</sub> begins to exchange with H<sub>A</sub>, possibly via a symmetric methylene intermediate, B. We cannot exclude the possibility that the H<sub>A</sub>/H<sub>B</sub> exchange consists *only* of a "rocking" motion, but on the basis of other results in our laboratory on neopentylidene complexes,<sup>9</sup> we believe H<sub>B</sub> may actually migrate around the four octahedral faces in the upper half of A before exchanging with H<sub>A</sub>.

If our postulate is correct, we should be able to see, by deuteration of W(CH)L<sub>4</sub>Cl, behavior which is consistent with a preference for H in the  $H_B$  position and D in the  $H_A$  position.<sup>10</sup> W(CH)(PMe<sub>3</sub>)<sub>4</sub>Cl reacts with Me<sub>3</sub>PD<sup>+</sup>CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> to give a red crystalline complex whose <sup>1</sup>H NMR spectrum shows a methylene peak for  $[W(CH_2)L_4Cl]^+$  at -0.16 and a broader peak at -1.40 ppm with approximately the same area. Each shows <sup>183</sup>W satellites and the total area is one proton. After this sample was recrystallized in the presence of 20 equiv of CH<sub>3</sub>OD, the -1.40-peak was the more intense. We propose that the initial product is a mixture of  $[W(CH_2)L_4Cl]^+$ ,  $[W(CHD)L_4Cl]^+$ , and [W- $(CD_2)L_4Cl$ <sup>+</sup> in approximately a 1:2:1 ratio and that the -1.40ppm peak in the <sup>1</sup>H NMR spectrum is that due to the methylene proton in  $[W(CHD)L_4Cl]^+$ . The position of this resonance allows us to determine what the H occupancy of the  $H_B$  position is at room temperature in  $[W(CHD)L_4C1]^+$ . Let us assume that the position of the resonance for  $H_A$  would also be 7.05 ppm at 298 K. Since the average at 298 K for  $[W(CH_2)L_4Cl]^+$  is at -0.16 ppm, the resonance for  $H_B$  at 298 K would be at -7.37 ppm.<sup>11</sup> In  $[W(CHD)L_4Cl]^+$  the average peak at 298 K is at -1.40 ppm. Therefore the proton occupancy of the  $H_B$  site is (7.05 + (1.40)/(7.05 + 7.37) = 0.59, the equilibrium constant between the  $[W(CHD)L_4Cl]^+$  complex in which  $H_B = H$  and that in which  $H_A = H$  is 0.70, and the former is ~0.20 kcal lower in energy (eq 2). These numbers are inaccurate because of the assumptions

we made and the uncertainty of the location of the resonance for  $H_A$ , but they at least provide some idea of their magnitudes.<sup>12</sup> We felt that one reason why  $[W(CH_2)(PMe_3)_4Cl]^+CF_3SO_3^-$  a hydride ligand lie in the pentagonal plane is sterically untenable. Since we know that two dmpe ligands in a related tantalum complex can accomodate a hydride in the pentagonal plane,<sup>13</sup> we prepared W(CH)(dmpe)<sub>2</sub>Cl,<sup>14</sup> and protonated it with CF<sub>3</sub>SO<sub>3</sub>H *or* HCl, hoping to find a methylidyne hydride complex instead of a distorted methylene complex. This is the case [eq 3;  $\nu_{WH}$  1830 cm<sup>-1</sup>(w)]. The <sup>1</sup>H NMR spectrum in CD<sub>2</sub>Cl<sub>2</sub> at 200 K shows

$$L = Me_2 P CH_2 CH_2 P Me_2, A^{-} = CF_3 SO_3^{-}, CI^{-}$$

a signal for the methylidyne proton at 5.16 ppm ( $J_{HW} = 80$  Hz), but the signal for the hydride is obscured by the signals for the four dmpe methyl groups. At 325 K in CD<sub>3</sub>CN the signal for the methylidyne proton and that for the hydride average to give a quintet ( $J_{HP} = 18$  Hz) at 3.60 ppm. In the <sup>13</sup>C NMR spectrum at 243 K the signal due to the methylidyne  $\alpha$  carbon is found at 263 ppm, a broad doublet with  $J_{CH} = 125$  Hz. At 295 K it is a *triplet* of quintets ( $J_{CP} = 12$  Hz) with  $J_{CH} = 69$  Hz and  $J_{CW}$ = 189 Hz. All these data are consistent with the molecule being a methylidyne hydride complex in which the methylidyne and hydride protons exchange. Note that this equilibration process, as one would expect, appears to have a higher activation energy than that in the distorted methylene complex.

We knew for some time that  $W(CH)(PMe_3)_4Cl$  reacted differently with HCl than with  $CF_3SO_3H$ . We now know the product with HCl is actually neutral  $W(CH)(H)(PMe_3)_3Cl_2$ , with, we believe, a pentagonal-bipyramidal structure related to that postulated for  $[W(CH)(H)(dmpe)_2Cl]^+$  (eq 4).<sup>15</sup> A PMe<sub>3</sub> ligand

$$\begin{array}{c} H \\ C \\ C \\ L \\ W \\ L \\ C \\ C \\ \end{array}$$

in  $[W(CH_2)L_4Cl]^+Cl^-$  (but not a dmpe ligand in  $[W(CH_2)-(dmpe)_2Cl]^+$ ) must be labile on the chemical time scale, and  $Cl^-$  (but not  $CF_3SO_3^-$ ) can compete with it for the coordination site.

These results confirm that a methylene ligand is subject to the distortion and reversible  $\alpha$ -elimination reaction that neopentylidene or benzylidene ligands are subject to in similar circumstances. We believe the driving force is "oxidation" of the metal from "W<sup>4+</sup> (d<sup>2</sup>)" to "W<sup>6+</sup> (d<sup>0</sup>)". This process must be related to the elimination of an  $\alpha$  hydrogen in [WCp<sub>2</sub>(CH<sub>3</sub>)]<sup>+</sup> to give [WCp<sub>2</sub>-(CH<sub>2</sub>)(H)]<sup>+</sup> (both postulated intermediates).<sup>16</sup> A plausible extension of these findings is that  $\alpha$ -elimination equilibria (either alkyl  $\rightarrow$  alkylidene hydride or alkylidene  $\rightarrow$  alkylidyne hydride) lie to the right only in reduced metal complexes. In d<sup>0</sup> species the alkyl or alkylidene ligand is at most only distorted so as to place H<sub> $\alpha$ </sub> in a position from which it can be abstracted by a leaving group on the metal or an external base.<sup>17</sup>

Acknowledgment. R.R.S. thanks the National Science Foundation for support (Grant CHE 79 05307).

We felt that one reason why  $[W(CH_2)(PMe_3)_4Cl]^+CF_3SO_3^$ is not actually a methylidyne hydride complex might be that a pentagonal bipyramidal molecule in which four PMe<sub>3</sub> ligands and

<sup>(9)</sup> In complexes such as Ta(CHCMe<sub>3</sub>)(PMe<sub>3</sub>)<sub>4</sub>Cl or Ta(CHCMe<sub>3</sub>)-(dmpe)<sub>2</sub>Cl, all phosphorus nuclei are equivalent by <sup>31</sup>P NMR down to ~140 K. Since the neopentylidene ligands are highly distorted toward neopentylidyne ligands ( $J_{CH} \approx 60$  Hz), we believe the process by which this occurs is an "apparent rotation" of the alkylidene ligand, one which simply consists of migration of H<sub>a</sub> about the four octahedral faces in the upper half of the molecule. (Turner, H. W., unpublished results.)

 <sup>(10) (</sup>a) Kreevoy, M. M.; Liang, T. M. J. Am. Chem. Soc. 1980, 1028, 3315-3222 and references therein. (b) Kirchen, R. P.; Okazawa, N.; Ranganayahulu, K.; Rauk, A.; Sorensen, T. S. J. Am. Chem. Soc. 1981, 103, 587-604. (c) Calvert, R. B.; Shapley, J. R. J. Am. Chem. Soc. 1978, 100, 7726-7727.

<sup>(11)</sup> For various reasons which we cannot go into here, we believe the resonance for  $H_B$  would shift more than that for  $H_A$  as the methylene ligand distorts, and the amount of distortion would increase on lowering the temperature. This would explain why the signal for  $H_B$  shifts from -7.37 ppm (estimated) at 298 K to -7.97 ppm at 165 K and therefore why the average resonance shifts upfield.

<sup>(12)</sup> In an osmium cluster in which H or D in OsCH<sub>2</sub>D can interact with a neighboring Os atom, the energy difference between the two forms is 130  $\pm$  10 cal.<sup>10c</sup>

<sup>(13)</sup> Churchill, M. R.; Wasserman, H. W.; Turner, H. J.; Schrock, R. R., to be published.

<sup>(14)</sup> This molecule was prepared by heating W(CH)(PMe<sub>3</sub>)<sub>4</sub>Cl in neat, excess dmpe at 110 °C for 48 h.

<sup>(15)</sup> Anal. Calcd for WC<sub>10</sub>H<sub>29</sub>Cl<sub>2</sub>P<sub>3</sub>: C, 24.15; H, 5.84. Found: C, 24.55; H, 5.95. At 200 K the CH resonance is found at 6.46 ppm (broad singlet,  $J_{HW} = 78$  Hz) and the WH resonance is found at 4.53 ppm ( $\sim dt$ ,  $J_{HP} = 18$  Hz,  $J_{HP_2} = 95$  Hz) in the <sup>1</sup>H NMR spectrum. The W=C resonance is found at 246 ppm (d,  $J_{CH} = 150$  Hz).  $\nu_{WH}$  is found at 2050 cm<sup>-1</sup> (w, br). At 293 K the CH and WH resonances average in the <sup>1</sup>H NMR spectrum to give a single peak at +4.6 ppm, a broad quartet with  $J_{HP} = 24$  Hz. One explanation of why the average resonance at room temperature is not near the average of the two peak positions in the low temperature spectrum is that at room temperature a nonnegligible fraction of the molecule at room temperature is actually a distorted methylene complex or a cationic species.

<sup>(16)</sup> Cooper, N. J.; Green, M. L. H. J. Chem. Soc., Dalton Trans. 1979, 1121.

<sup>(17)</sup> Schrock, R. R. Acc. Chem. Res. 1979, 12, 98-104.